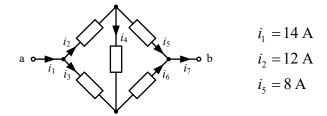
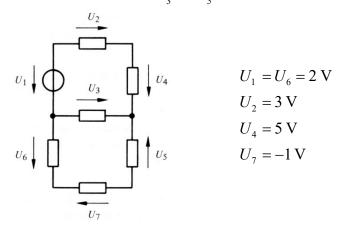

EXERCICES CHAPITRE 1 – Partie A

Exercice 1

Une ligne de transport d'énergie électrique a une longueur de 200~km. Elle est formée de câbles de 20~mm de diamètre. Le courant qui les parcourt est de 800~A. Le matériau constituant présente une résistivité $\rho=30~n\Omega m$. Déterminer la résistance et les pertes Joules par câble.


Exercice 2

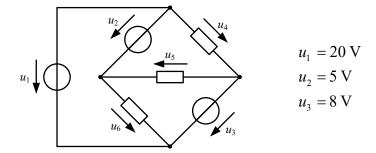
Déterminer les courants $I_{\scriptscriptstyle 4}$ et $I_{\scriptscriptstyle 8}$ du schéma suivant :


Exercice 3

Calculer les courants i_3 , i_4 , i_6 et i_7 du bipôle suivant :

Exercice 4

Déterminer les tensions $U_{\scriptscriptstyle 3}$ et $U_{\scriptscriptstyle 5}$ du schéma suivant :



1

Exercice 5

Calculer les tensions u_4 , u_5 et u_6 du circuit suivant :

Exercice 6

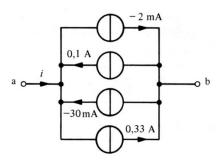
Déterminer les résistances équivalentes à la mise en série et à la mise en parallèle de quatre résistances valant respectivement $150~\Omega$, $33~\Omega$, $100~\mathrm{m}\Omega$ et $3.9~\mathrm{k}\Omega$.

Exercice 7

Déterminer les capacités équivalentes à la mise en série et à la mise en parallèle de trois capacités valant respectivement 33 nF, 150 nF et 47 pF.

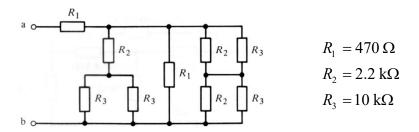
Exercice 8

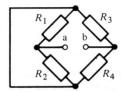
Déterminer l'inductance équivalente à la mise en série et à la mise en parallèle de deux inductances valant respectivement 3 μH et $10~\mu H$.


Exercice 9

Quelle est la source de tension équivalente au bipôle suivant (tension u_{ab}) :

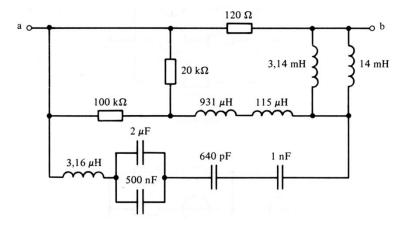
Exercice 10


Quelle est la source de courant équivalente au bipôle suivant (courant i) :

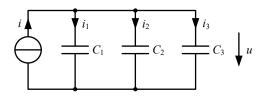

Exercice 11

Calculer la résistance équivalente au bipôle suivant (résistance R_{ab}) :

Exercice 12


Calculer la résistance équivalente au bipôle suivant (résistance R_{ab}):

$$R_1 = 2 \text{ k}\Omega$$
 $R_3 = 5 \text{ k}\Omega$
 $R_2 = 8 \text{ k}\Omega$ $R_4 = 200 \Omega$


Exercice 13

Réduire le plus possible le bipôle suivant :

Exercice 14

Trois capacités $C_1=1\,\mu\mathrm{F}$, $C_2=2\,\mu\mathrm{F}$ et $C_3=3\,\mu\mathrm{F}$ sont branchées en parallèle à une source de courant i. Déterminer la fraction du courant i de la source qui circule dans chaque capacité (courants i_1 , i_2 et i_3).

3

SOLUTIONS

Exercice 1

Résistance : $R = 19.1 \Omega$ Pertes Joules : P = 12.2 MW

Exercice 2

Courant I_4 : $I_4 = 7 \text{ A}$ Courant I_8 : $I_8 = -10 \text{ A}$

Exercice 3

Courant i_3 : $i_3 = 2$ A Courant i_4 : $i_4 = 4$ A Courant i_6 : $i_6 = 6$ A Courant i_7 : $i_7 = 14$ A

Exercice 4

Tension U_3 : $U_3 = 6 \text{ V}$ Tension U_5 : $U_5 = 3 \text{ V}$

Exercice 5

Tension u_4 : $u_4 = 12 \text{ V}$ Tension u_5 : $u_5 = -7 \text{ V}$ Tension u_6 : $u_6 = 15 \text{ V}$

Exercice 6

Mise en série de résistances : $R_{\rm s} = 4083.1\,\Omega$ Mise en parallèle de résistances : $R_{\rm p} = 0.0996\,\Omega$

Exercice 7

Mise en série de capacités : $C_{\rm s} = 46.9~{\rm pF}$ Mise en parallèle de capacités : $C_{\rm p} = 183.05~{\rm nF}$

Exercice 8

Mise en série d'inductances : $L_{\rm s}=13~\mu{\rm H}$ Mise en parallèle d'inductances : $L_{\rm p}=2.308~\mu{\rm H}$

Exercice 9

Source de tension équivalente : $u_{ab} = -7 \text{ V}$

Exercice 10

Source de courant équivalente : i = 258 mA

Exercice 11

Résistance équivalente : $R_{\rm ab} = 863 \, \Omega$

Exercice 12

Résistance équivalente : $R_{\rm ab} = 1.792~{\rm k}\Omega$

Exercice 14

Branche 1: $i_1 = \frac{1}{6}i$

Branche 2 : $i_2 = \frac{1}{3}i$

Branche 3 : $i_3 = \frac{1}{2}i$

5